24 research outputs found

    Evaluating the use of the Child and Adolescent Intellectual Disability Screening Questionnaire (CAIDS-Q) to estimate IQ in children with low intellectual ability

    Get PDF
    In situations where completing a full intellectual assessment is not possible or desirable the clinician or researcher may require an alternative means of accurately estimating intellectual functioning. There has been limited research in the use of proxy IQ measures in children with an intellectual disability or low IQ. The present study aimed to provide a means of converting total scores from a screening tool (the Child and Adolescent Intellectual Disability Screening Questionnaire: CAIDS-Q) to an estimated IQ. A series of linear regression analyses were conducted on data from 428 children and young people referred to clinical services, where FSIQ was predicted from CAIDS-Q total scores. Analyses were conducted for three age groups between ages 6 and 18 years. The study presents a conversion table for converting CAIDS-Q total scores to estimates of FSIQ, with corresponding 95% prediction intervals to allow the clinician or researcher to estimate FSIQ scores from CAIDS-Q total scores. It is emphasised that, while this conversion may offer a quick means of estimating intellectual functioning in children with a below average IQ, it should be used with caution, especially in children aged between 6 and 8 years old

    Pressure induced enhancement of the magnetic ordering temperature in rhenium(IV) monomers

    Get PDF
    Materials that demonstrate long-range magnetic order are synonymous with information storage and the electronics industry, with the phenomenon commonly associated with metals, metal alloys or metal oxides and sulfides. A lesser known family of magnetically ordered complexes are the monometallic compounds of highly anisotropic d-block transition metals; the ‘transformation’ from isolated zero-dimensional molecule to ordered, spin-canted, three-dimensional lattice being the result of through-space interactions arising from the combination of large magnetic anisotropy and spin-delocalization from metal to ligand which induces important intermolecular contacts. Here we report the effect of pressure on two such mononuclear rhenium(IV) compounds that exhibit long-range magnetic order under ambient conditions via a spin canting mechanism, with Tc controlled by the strength of the intermolecular interactions. As these are determined by intermolecular distance, ‘squeezing’ the molecules closer together generates remarkable enhancements in ordering temperatures, with a linear dependence of Tc with pressure

    Magneto-orbital texture in the perovskite modification of Mn2O3

    No full text
    Crystal and magnetic structures of the high-pressure-stabilized perovskite modification of Mn2O3 (ζ -Mn2O3) have been studied by neutron powder diffraction combined with symmetry arguments based on the phenomenological Landau theory. This metastable phase exhibits a unique charge disproportionation phenomenon stabilizing the quadruple perovskite structure (Mn2+Mn3+ 3 )Mn3.25+ 4 O12 with an additional charge-ordering and commensurate orbital density wave localized in the B-site perovskite position. The commensurate nature of the orbital density wave is stimulated by a coupling of the orbital ordering to independent structural distortions, which improve poor bonding conditions of Mn2+ in the A-site perovskite position. Below T1 ∼ 100 K, an anharmonic longitudinal spin density wave arises and locks to the structural modulation associated with the orbital density. At T2 ∼ 50 K, the magnetic subsystem delocks from the structural modulation giving rise to a multi-k phase-modulated ground state admixing cycloidal and helical components. The complex anharmonic and phase-modulated magnetic structures are discussed based on a phenomenological magneto-orbital coupling scheme, previously developed to explain the multi-k helical ground states with modulated spin chirality observed in A2+Mn7O12 (A2+ = Ca, Sr, Pb, and Cd) quadruple perovskite

    Spin-induced multiferroicity in the binary perovskite manganite Mn2O3

    No full text
    The ABO3 perovskite oxides exhibit a wide range of interesting physical phenomena remaining in the focus of extensive scientific investigations and various industrial applications. In order to form a perovskite structure, the cations occupying the A and B positions in the lattice, as a rule, should be different. Nevertheless, the unique binary perovskite manganite Mn2O3 containing the same element in both A and B positions can be synthesized under high-pressure high-temperature conditions. Here, we show that this material exhibits magnetically driven ferroelectricity and a pronounced magnetoelectric effect at low temperatures. Neutron powder diffraction revealed two intricate antiferromagnetic structures below 100 K, driven by a strong interplay between spin, charge, and orbital degrees of freedom. The peculiar multiferroicity in the Mn2O3 perovskite is ascribed to a combined effect involving several mechanisms. Our work demonstrates the potential of binary perovskite oxides for creating materials with highly promising electric and magnetic properties
    corecore